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Recommendations and limiting conditions were worked out for calculating the effec- 
tive thermal diffusivity of layered composite materials. 

Calculations of nonSteady-state temperature fields in heterogeneous materials entail 
considerable mathematical difficulties both in the case of analytical approach [1-3] and 
when numerical methods are used. These methods serve for examining discrete regions of the 
components with the corresponding thermophysical properties and boundary conditions accord- 
ing to the structural arrangement of the material, and the obtained solutions of the differ- 
ential equation of thermal conductivity make it possible to determine the temperature at 
any point of the bulk of the composite material at any instant. 

In many practically important problems there is no need of such complete information on 
the temperature fields in the bulk of the material, and it suffices to have information on 
the time-dependent change of temperature only in some section of the material or on the bound- 
ary of the body. For such problems it is expedient to determine the conditions under which 
the effect of each discrete region of the components on the inhomogeneity of the temperature 
field is negligibly small, and the aggregate of their effect can be taken into account by 
introducing some effective properties characterizing the heat transfer within the bulk of 
the composite material. 

Such an approach has found widespread application in the theory of generalized conduc- 
tivity [4] for the calculation of the effective thermal conductivity of heterogeneous mate- 
rials. The real chaotic structure of the material is reduced to an adequate ordered struc- 
ture, and owing to having a further order (regular recurrence of the geometric and physical 
properties of the structure) it is always possible to distinguish an elementary cell. The 
aggregate of regularly arranged elementary cells makes it possible to restore the entire 
volume of the initial ordered model. 

The validity of the final calculation formulas is practically determined by the validity 
of the transition from inhomogeneous real material to the quasihomogeneous model with the 
aid of the elementary cell. Then we analyze by various methods the course of the thermal 
flow through the elementary cell for the steady-state thermal regime, and a formula is sug- 
gested for determining the effective thermal conductivity. There are no concrete recommenda- 
tions and restrictions for the dimensions or for the number of elementary cells, except the 
requirement that L>>/ (L is the characteristic dimension of the specimen, 1 is the character- 
istic dimension of the elementary cell). The volume of the elementary cell of the hetero- 
geneous material, by which the temperature field and the properties are averaged, has to be 
sufficiently large in comparison with the microscopic inhomogeneities of the material, and 
very small in relation to the macroscopic inhomogeneities of the temperature field. Only 
in this case can the results of the calculation of the conductivity of the elementary cell 
be applied to inhomogeneous real material. 

Thermal diffusivity, determined as the ratio of thermal conductivity to volumetric 
specific heat of the material [5], is an important thermophysical characteristic whose use 
helps solve many problems of nonsteady-state thermal regime. 

In the transition from inhomogeneous real material to the quasihomogeneous model, to 
which effective thermal diffusivity is applicable, analogously to effective thermal conduc- 
tivity, attention must be given not only to the adequacy of the elementary cell but also to 
the eventual dimensions of the cell and of the real specimen. 
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Kerrisk [6] recommends the criterion of homogeneity for matrix structures in connection 
with the experimental investigation of thermal diffusivity by the methods of the regular 
regime of the third kind and of impulsive heating. According to the criterion of homogeneity, 
the diameter of an inclusion has to be much smaller (between i00 and I000 times) than the 
thickness of the specimen. It is characteristic that the criterion of homogeneity contains 
only the geometric dimensions, and that the difference in the properties of the components 
of the material is not taken into account. It is easy to realize that when the properties 
of the components differ only slightly, then this criterion is excessively stringent. 

In the course of the investigations of [7, 8], the conditions of homogeneity for matrix 
structures in the form of ratios of the geometric characteristics of the structure and the 
physical properties of the components were experimentally discovered. The material was con- 
sidered homogeneous when the thermal diffusivity, measured by the method of impulsive heating, 
coincided within the limits of the error with the thermal diffusivity found with the aid of 
the correlation equation 

aef = %ef/(cP~f, (1)  

where aef is the effective thermal diffusivity; %ef, effective thermal conductivity; (C0)ef, 
volumetric specific heat. 

The effective thermal conductivity was determined according to [9], and specific heat 
by the rule of additivity. It was found that the investigated materials (ratio of the ther- 
mal diffusivities of the components 0.48--1137, of the thermal conductivities 9.5--2370) are 
homogeneous ~Ithough the criteria type [6] were not met. The ratio of the diameter of the 
inclusion to the thickness of the specimen was between 0.i and 0.25. 

Dul'nev and Sigalov [i0] presented the mean volumetric and rms errors of determining 
the dimensionless temperature occurring in the transition from inhomogeneous to quasihomo- 
geneous materials. They examined layered materials with different arrangement of the layers 
in relation to the direction of the heat flow. The results of the numerical solution indi- 
cate palpable errors, especially when the material has a small number of layers. 

In addition to the geometric characteristics of the structure and the physical proper- 
ties of the components, the criterion of homogeneity also depends of course on the type of 
structure. 

Henceforth we will examine two-component materials consisting of plates (layers) orienta- 
ted perpendicularly to the direction of the thermal flow. Adjacent layers are situated in 
conditions of ideal thermal contact, and between them physicochemical transformations do not 
occur. 

The selection of the layered structure of the material is not only due to the endeavor 
to simplify analysis but also to the closeness of real problems and materials to similar 
structures. 

Schimmel et al. [ii] present an expression for calculating effective thermal diffusivity 
of composite material with the above-mentioned structure consisting of N layers; the expres- 
sion has the form 

�9 ~ ' 
aef  = i=~ r I ciPi (2) 

w h e r e  i i s  t h e  o r d i n a l  number  o f  t h e  l a y e r ;  a,  t h e r m a l  d i f f u s i v i t y ;  p ,  d e n s i t y ;  c ,  s p e c i f i c  
h e a t  p e r  u n i t  w e i g h t ;  Z, t h i c k n e s s  o f  t h e  l a y e r ;  L ,  o v e r a l l  t h i c k n e s s  o f  t h e  m a t e r i a l  i n  t h e  
direction of the heat flow. 

Expression (2) was obtained by the approximate method of superposition for the case when 
one surface (the rear one) of layered composite material is heat insulated (adiabatic), and 
on the other surface (the front one) the heat flow can change arbitrarily in time. By using 
(2), we can determine a change of temperature in time only on the front and rear surfaces of 
the layered plate; such a limitation ensues from the simplifications adopted in the statement 
of the problem by Schimmel et al. [ii]. 

Let us examine a two-component layered composite material (Fig. i) consisting of n 
layers of each component. Then N = 2n, and if we adopt a specimen of unit length (L = i), we 
have: 
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Fig. i. Diagram of a multilayered two-component material: 
a) component i; b) component 2; c) adiabatic surface~ q) 
direction of heat flow; numbers on the right: layer numbers. 

Fig. 2. Dependence of the criterion of homogeneity on the 
number of layers and on the volumetric concentrations of the 
components: i, 2, 3, 4) thermophysical properties of the 
components: ~i =418.6 W/(m.~ al =3"I O-s m2/sec, @0)i = 
1.395"107 J/(ma'~ X2 =0.042 W/(m.~ a2 =3-10 -7 m2/sec, 
(cp)2 =1.40"106 J/(mS.~ [ii]; 5, 6, 7, 8) thermophysieal 
properties of the components: ~ =115 W/(m.~ al =3.18" 
10 -5 m2/sec, (c0)i =3.615"106 J/(ma'~ X2 =9.0 W/(m.~ 
a2 =2.15"10 -6 m2/sec, (cp)2 =4.186"106 J/(mS-~ i, 3, 5, 
7) m= =0.i; 2, 4, 6, 8) m2 =0.5. 

11= m ~ ;  12-- m2 (3) 
n n 

We adopt Xl >Xa, a~ >a2,  clP~ >c2p2, i . e . , w e c o n s i d e r  c o m p o n e n t l n o m i n a l l y c o n d u c t i n g ,  and 
component 2 to be i n s u l a t i n g  m a t e r i a l .  

Let the first layer consist of component i, then the effective thermal diffusivity for 
the n-layered two-component material is expressed as 

1 __rzZ( l~ l~14_n(rz+l)~( l~c2~l+n(n__l )12  (~1E1~)11 . 
aef t \ at a2 / ~ \ c l p , /  a--~\ c# , ,  / ( 4 )  

When the first layer is made of component 2, then 

- +  -757. (5> 

Expressions (4) and (5) were obtained for two-component material by the method of super- 
position explained in [ii], and with the use of the method of mathematical induction for 
extension to the n-layered case. 

It follows from (4) and (5) that the effective thermal diffusivity depends on the se- 
quence in which the layers of the components are arranged. This deduction leads to the conclu- 
sion that the experimental data depend on the disposition of the specimens relative to the 
heating element in some methods of experimentally determining thermal diffusivity [7, 12]. 

It is known that effective thermal conductivity and volumetric specific heat, and accord- 
ing to (i) also effective thermal diffusivity, are invariant to the sequence in which the 
layers are arranged. It is easy to see that when the number of layers n increases, the 
results of calculation by (4) and (5) approach each other, and the dependence of the effec- 
tive thermal diffusivity on the sequence of arrangement of the layers of the components 
gradually degenerates. 
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Fig. 3. Variants of the 
structure of layered compos- 
ite material: i) component 
i; 2) component 2; 3) adiabat- 
ic surface; 0--0) central 
axis of the material; q) 
direction of heat flow; I, 
II) n =2, N =4; IIl, IV) 4 
and 8, respectively. 

According to the theory of generalized conductivity, the effective thermal conductivity 
of the given layered material is equal to 

(6) Xef= 

Volumetric specific heat is expressed as 

n (clfh[ 1 + Q9~12) (7) (c~)~r - Z 

and effective thermal diffusivity according to (i) is 

- n2 ~' + + n 2  - �9 ( 8 )  
aef al a2 al Clpl J as \ c292 

~ a e n  n i n c r e a s e s ,  t h e  n u m e r i c a l  r e s u l t s  a c c o r d i n g  t o  (4) and (5) a p p r o a c h  t h o s e  o f  ( 8 ) .  

Thus ,  we c a n  p r o p o s e  a c r i t e r i o n  o f  h o m o g e n e i t y  f o r  t w o - c o m p o n e n t  m a t e r i a l  w i t h  s i m p l e  
alternation of layers arranged perpendicularly to the direction of the heat flow (Fig. i) 
which requires coincidence (proximity) of the numerical values of thermal conductivity found 
by (4), (5) on the one hand, and (8) on the other hand. We point out that in this case the 
criterion of homogeneity of the material contains the geometric as well as the physical prop- 
erties of the components. From (4), (5), and (8) the criteria of homogeneity X~, X2 are 
equal to: 

aef X 1 - 

aef 

,1 l / 
\ al as 1)--h~-~ , ClP1 ] a2 \ c2p2 / 

+ 
L al a2 " \alc19t a2c292 / 

as k c191 I 1)-~-2 k c29~ / 

al ~ a2 \a lc lp l  �9 a2czp~/fl 

11"2 ( al 
X , ~ -  aef 

aef.2 

(9) 

or  

17ll/7/~-( Ctpl C2D2 i ' 
X 1 = 1 - -  aef n \a2c2p2 alc191/ 

mlm2 (. c19'. c292 ] �9 
X z  = 1 + aef n \a~c~p2 a lc lp l /  

(io) 

Numerically, the values of the criterion of homogeneity lie within the limits O~XI~ I~ 
I~X2~2. The values of Xz, X2 approach unity, which corresponds to the fulfillment of the 
requirement that the material be homogeneous when the number of layers n increases, with 
insignificant volumetric proportion of one component, and in case of the difference between 
the thermophysical characteristics of the components being small. 
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As an example, Fig. 2 presents the values of the criteria of homogeneity for two differ- 
ent materials. The dependence of XI, X= on the volumetric proportions of the components is 
monotonic because with ml = i or m2 =i, which corresponds to homogeneous material, the crite- 
ria of homogeneity are equal to unity. 

When there is a substantial difference in the thermophysical properties of the compo- 
nents and when the number of layers is constant, the criterion of homogeneity deviates most 
from unity in the region of volumetric concentrations m~ ~m2 ~0.5 (Fig. 2, curves 2 and 4). 
Similar results were also obtained theoretically and experimentally for a structure with 
layers arranged parallel to the direction of the heat flow [i0, 13], and theoretically for 
the matrix structure [14]. 

It should be pointed out that when there are considerable differences in the thermophys- 
ieal properties of the components, or even when the number of layers n is very large, the 
values of X~ and X2 may substantially differ from unity. This again puts emphasis on the 
necessity of carefully selecting the elementary cell for calculating effective thermal diffu- 
sivity of heterogeneous materials by (i) and of the corresponding relationship to the struc- 
ture and thickness of the test specimens in the experimental determination of thermal diffu- 
sivity [12]. Analogous problems also arise in the experimental investigation of thermal con- 
ductivity by nonsteady-state methods [15]. 

Sehimmel at al. [ii] used a numerical method to find the dependence of the change of 
temperature on time for a two-component four-layer material with different combinations of 
the sequence of the component layers. It is characteristic that the effective thermal diffu- 
sivity of the material is greater when the layer of component i (the conducting component) 
faces the side of thermal action on the specimen. We analyzed (2) in connection with a two- 
component material. The point of departure of the analysis was to seek such regularities of 
the sequence of component layers (the number of layers of both components is equal) that the 
effective thermal diffusivity calculated by (2) coincides with the results of calculation by 
(8). In that case the criterion of homogeneity as the ratio of the mentioned thermal diffu- 
sivities is equal to unity. 

Figure 3 presents several variants of structures that are axisymmetric with respect to 
the axis O--0. Using the criterion of symmetry (equality of the parameters of the i-th and 
N+I -- i-th layers a~ =aN+l-i; l~ =/N+1-i, etc.), we transform the ratio (2) into 

- -  = 2 i @ 2 2 ( c j p f l j - - c i p i l i )  �9 (ii) 
aef i=l ai  i=~ i=~ 

For the two-component case we can obtain (8) from expression (ii). Hence follows that 
when the condition of symmetry is met, the thermal diffusivities calculated by (2), (ii), and 
(8) coincide. This assertion is correct for any arbitrary volumetric proportion of the com- 
ponents, for any number of layers n, and independently of the relationshi~ between the ther- 
mophysical properties of the components. 

It must be pointed out that expression (ii) may also be used in the more general case, 
for calculating the effective thermal diffusivity of a multicomponent axisymmetric material. 

In the calculation of the change of temperature using (8), Schimmel et al. [ii] were in 
error~ in reality the corresponding curve has to coincide with the curves for the two cited 
axisymmetric layered structures. 

Thus, the selection of a representative elementary cell and the requirements that the 
specimens of material have to meet in the investigation of the effective thermal diffusivity 
have similar features. It should be emphasized that the presented recommendations are cor- 
rect with a view to the adopted assumptions, i.e., in the calculation of temperature on the 
rear adiabatic surface of the layered material. Problems of this and similar type are char- 
acteristic of some types of thermal insulation, and also in connection with the determination 
of thermal diffusivity by methods of impulsive and monotonic heating. 

It is interesting to note that even in the case of one type of structure (layered com- 
posite materials with layers arranged perpendicularly to the direction of the heat flow) ful- 
fillment of the criterion of homogeneity depends substantially on the regularity of the 
sequence of the layers, but for some combinations (axisymmetric sequence of layers) it is 
fulfilled automatically. 
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NOTATION 

ml, m2, volumetric concentrations of components i and 2, respectively; 11, 12, thermal 
conductivity of components 1 and 2, respectively; al, a2, thermal diffusivity of components 
1 and 2, respectively; (cp)1, (cp)2, volumetric specific heat of components 1 and 2, respec- 
tively; q, heat flow; l~, 12, thickness of the layer of components 1 and 2, respectively~ L, 
total thickness of the specimen of the material; aef. 1 , effective thermal diffusivity of 
heterogeneous material when the first layer is made of component i; aef. 2 , the same for com- 
ponent 2; n, number of layers of the given component; N, total number of layers of components; 
XI, X2, criterion of homogeneity of the material. 
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